Skip to content
  • General
  • Programming
  • DS & Algo
  • System Design
  • Interview Questions
  • Home
  • YouTube
  • About
  • Contact
Learn to Code and Code to Learn

Learn to Code and Code to Learn

Your Journey to Code Mastery

  • General
    • Setup
  • Programming
    • C++
    • C++-11
    • c++-14
    • Python
  • DS & Algo
    • DS
    • Algo
      • Competitive Programming
        • Leetcode Problems
  • System Design
    • Design Pattern
    • SOLID Principle
  • Interview Questions
    • C++
    • Company Wise
  • Toggle search form

#4 Median of Two Sorted Arrays

Posted on January 15, 2022June 25, 2023 By thecodepathshala No Comments on #4 Median of Two Sorted Arrays

Given two sorted arrays nums1 and nums2 of size m and n respectively, return the median of the two sorted arrays.

The overall run time complexity should be O(log (m+n)).

Example 1:

Input: nums1 = [1,3], nums2 = [2]
Output: 2.00000
Explanation: merged array = [1,2,3] and median is 2.

Example 2:

Input: nums1 = [1,2], nums2 = [3,4]
Output: 2.50000
Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5.

Simple Solution :

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        double median;
        int size= nums1.size() + nums2.size();
        vector<int> nums3;
        for(int i=0, j=0; i< nums1.size(); i++)
            nums3.push_back(nums1[i]);
        for(int i=0; i< nums2.size(); i++)
            nums3.push_back(nums2[i]);
        sort(nums3.begin(), nums3.end());
        if(size % 2 != 0)
            median = nums3[size/2];
        else
            median = (double(nums3[(size/2)-1]) + nums3[(size/2)]) / 2;
        
        return median;
    }
};

Complete Code :

#include <bits/stdc++.h>
using namespace std;

double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        double median;
        int size= nums1.size() + nums2.size();
        vector<int> nums3;
        for(int i=0, j=0; i< nums1.size(); i++)
            nums3.push_back(nums1[i]);
        for(int i=0; i< nums2.size(); i++)
            nums3.push_back(nums2[i]);
        sort(nums3.begin(), nums3.end());
        if(size % 2 != 0)
            median = nums3[size/2];
        else
            median = (double(nums3[(size/2)-1]) + nums3[(size/2)]) / 2;
        
        return median;
    }

int main() {
    vector<int> v1, v2;
    v1.push_back(1);
    v1.push_back(2);

    v2.push_back(3);
    v2.push_back(4);

    double median = findMedianSortedArrays(v1, v2);
    cout << median;

   return 0;
}

Another approaches :

Brute force Approach :

we should always start from brute force approach.

1.Merge Both Array
2.Sort them
3.Find Median
  if size is odd number the 
    median = array[size/2] 
  else
    median = (array[(size/2)-1]) + array[(size/2)]) / 2
  
TIME COMPLEXITY: O(n)+O(nlogn)+O(n)
SPACE COMPLEXITY: O(1)

Brute force Solution :

we should always start from brute force solution.

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
       // Initialization some neccessary variables
        vector<int>v;
        
        // store the array in the new array
        for(auto num:nums1)   // O(n1)
            v.push_back(num);
        
        for(auto num:nums2)  // O(n2)
            v.push_back(num);
        
        // Sort the array to find the median
        sort(v.begin(),v.end());  // O(nlogn)
        
        // Find the median and Return it
        int n=v.size();  // O(n)
        
        return n%2?v[n/2]:(v[n/2-1]+v[n/2])/2.0;
    }
};
Optimisation Using Two Pointer with Extra Space

Time Complexity: O(m+n)
Space Complexity: O(m+n)

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        
        // Create a single sorted by merging two sorted arrays
        int n1=nums1.size();
        int n2=nums2.size();
        int i=0;
        int j=0;
        int lastindex=-1;
             
        // Initialize a new array with size n1 + n2 and assign the default value 0
           vector<int>v(n1+n2,0);
        
        while(i<n1&&j<n2)
        {
            if(nums1[i]<=nums2[j])
                v[++lastindex]=nums1[i++];
            else
                v[++lastindex]=nums2[j++];
        }
        
        while(i<n1)
            v[++lastindex]=nums1[i++];
        while(j<n2)
            v[++lastindex]=nums2[j++];
        
    // Return the result
        int n=n1+n2;
        return n%2?v[n/2]:(v[n/2]+v[n/2-1])/2.0;
        
    }
};
Optimisation using Two Pointer without Extra Space (Insertion Sort)

Time Complexity: O(n1*n2)
Space Complexity: O(1)

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        
       // Calculate Total length of final array: O(N)
        int n1=nums1.size();  
        int n2=nums2.size();
        int n=n1+n2;  
      
        // Edge Cases
        if(n2==0)
            return n1%2?nums1[n1/2]:(nums1[n1/2-1]+nums1[n1/2])/2.0;
        if(n1==0)
             return n2%2?nums2[n2/2]:(nums2[n2/2-1]+nums2[n2/2])/2.0;
        
        // Resize the array 'nums1': O(N), N is size of resized array
        nums1.resize(n);
        
        // Now use pointer to compare arrays elements 
        int i=0;
        int j=0;
        
       // Store all element in 'array 1' in sorted order 
        while(i<n1)  // O(n1)
        {
            if(nums1[i]>nums2[0])
            {
                swap(nums1[i],nums2[0]);  // O(1)
                // Rearrange Array nums2
                rearrangeArray(nums2);  // O(n2)
            }
            i++;
        }
        
        // Store remaining elements of 'array 2' in 'array 1' 
        while(j<nums2.size()) // O(n2)
            nums1[i++]=nums2[j++];
        
    // Return Result
    return n%2?nums1[n/2]:(nums1[n/2-1]+nums1[n/2])/2.0;
        
    }
    
    void rearrangeArray(vector<int>&nums2)
    {
        // Using insertion sort for insertion 
           // worst case Time Complexity Would be: O(n)
        for(int i=1;i<nums2.size()&&nums2[i]<nums2[i-1];i++)
            swap(nums2[i],nums2[i-1]);
    }
};
Optimisation using GAP method

Time Complexity: O((log base 2 power N)*(N))
Space Complexity: O(1)

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        
        // Do some pre-calculation : O(N)
        int n1=nums1.size();
        int n2=nums2.size();
        int n=n1+n2;
        
        // Now Create Two Pointer
        int gap=ceil((n1+n2)/2.0);
        int i=0;
        int j=gap;
        
        // Edge Cases
        if(n1==0)
            return n2%2?nums2[n2/2]:(nums2[n2/2]+nums2[n2/2-1])/2.0;
        
        if(n2==0)
            return n1%2?nums1[n1/2]:(nums1[n1/2]+nums1[n1/2-1])/2.0;
        
        // Apply gap method: O((log base 2 power N)*N)
        
       while(gap)
       {   i=0;
           j=gap;
       // Move both pointer until they reach at last 
        while(j<n)
        {
            // If 'i' in 'nums1' and 'j' is also in 'nums1'
            if(i<n1&&j<n1&&nums1[i]>nums1[j])
            swap(nums1[i],nums1[j]);
        else
            // if 'i' in 'nums1' and 'j' is in 'nums2'
            if(i<n1&&j>=n1&&nums1[i]>nums2[j-n1])
                swap(nums1[i],nums2[j-n1]);
        else 
            // if 'i' in 'nums2' and 'j' is also in 'nums2'
            if(i>=n1&&j>=n1&&nums2[i-n1]>nums2[j-n1])
                 swap(nums2[i-n1],nums2[j-n1]);
            
        // Move both pointer ahead by only one step
        i++;
        j++;
        }
        
        // Edge Case, because of 'ceil()' gap never becomes zero
        if(gap==1)
            gap=0;
         
         gap=ceil(gap/2.0);
       }   
        
    //Return Result
      if(n%2)
          return n/2<n1?nums1[n/2]:nums2[n/2-n1];
     else
         if(n/2<n1)
             return (nums1[n/2]+nums1[n/2-1])/2.0;
        else
            if((n/2-1)<n1)
               return (nums1[n/2-1]+nums2[n/2-n1])/2.0;
       else 
           return (nums2[n/2-n1]+nums2[n/2-1-n1])/2.0;
       
    }
};
Optimisation using Binary Search

Time Complexity: O(log(min(m,n)))
Space Complexity: O(1)

class Solution {
public:
    double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
        
                   // * Intuition  *
        // I have to find out correct left half and correct right half
          // i.e : // 7 ,  || 12 , 14 , 15  --> parition it
                  //  1 , 2 , 3 , 4 , || 9 , 11  --> parition it
                  // Now just findout max(left1,left2), min(right1,right2)
        
        
        // Initilaization of some neccessary variables
        int n1=nums1.size();
        int n2=nums2.size();
        int n=n1+n2;
         
      if(n1>n2)  return findMedianSortedArrays(nums2,nums1);
        
     // When length is even, let's say 10 then left half length should be: (10+1)/2 =>5
     // When length is odd, let's say 11 then left half length should be: (11+1)/2 =>6
        // This mean that this formula gonna work in both condition
        int partition=(n+1)/2; 
        
    
    // Edge Case
    if(n1==0)
        return n2%2?nums2[n2/2]:(nums2[n2/2]+nums2[n2/2-1])/2.0;
    
    if(n2==0)
        return n1%2?nums1[n1/2]:(nums1[n1/2]+nums1[n1/2-1])/2.0;
    
    // Now do Partioning
    int left1=0;
    int right1=n1;
    int cut1,cut2;
    int l1,r1,l2,r2;
    
    do
    {   
        //Findout 'cut1' and 'cut2'
        cut1=(left1+right1)/2;
        cut2=partition-cut1;
   
        // Calculation for l1
        l1=cut1==0?INT_MIN:nums1[cut1-1];
        
        // Calculation for l2
        l2=cut2==0?INT_MIN:nums2[cut2-1];
        
        // Calculation for r1
        r1=cut1>=n1?INT_MAX:nums1[cut1];
        
        // Calculation for r2
        r2=cut2>=n2?INT_MAX:nums2[cut2];
        
        if(l1<=r2&&l2<=r1)
             // Return Result
             return n%2?max(l1,l2):(max(l1,l2)+min(r1,r2))/2.0;
        else
            
        if(l1>r2)
            right1=cut1-1;
        else
             left1=cut1+1;
       
       
    }while(left1<=right1);
        
             
    return 0.0;
    }
};
Algo, Competitive Programming, DS & Algo, Leetcode Problems Tags:coding interview, hard, leetcode

Post navigation

Previous Post: #2 Add Two Numbers
Next Post: GFG : Cyclically rotate an array by one

More Related Articles

Find the Duplicate Number Competitive Programming
Remove Nth Node From End of List Fast and Slow Pointer
Linked List Cycle II GFG
189. Rotate Array (Medium) Competitive Programming
LeetCode : 2461. Maximum Sum of Distinct Subarrays With Length K Algo
GFG PTOD | 10 Jan 2025 | Count distinct elements in every window Competitive Programming

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Archives

  • August 2025
  • March 2025
  • February 2025
  • January 2025
  • December 2024
  • August 2024
  • April 2024
  • March 2024
  • February 2024
  • January 2024
  • December 2023
  • November 2023
  • September 2023
  • February 2023
  • February 2022
  • January 2022
  • December 2021
  • November 2021
  • October 2021

Categories

  • Algo
  • Array in C
  • C Programming
  • C++
  • C++
  • Company Wise
  • Competitive Programming
  • Design Pattern
  • DS
  • DS & Algo
  • Fast and Slow Pointer
  • fixed size sliding window
  • General
  • GFG
  • GFG PTOD
  • Interview Questions
  • Leetcode Problems
  • Leetcode PTOD
  • Leetcode Top Interview 150
  • LLD
  • Low-level design
  • Mastering in C programming (Crash Course)
  • Programming
  • Roadmap
  • Setup
  • Setup
  • sliding window
  • SOLID Principle
  • STL
  • string in c
  • System Design
  • Top X

Tags

algorithm array bactracking basic c++ coding interview C Programming Crash Course data structure and algorithm design pattern dsa easy Fixed size sliding window fubctions GFD gfg GFG PTOD hard jump game LC PTOD leetcode Leetcode PTOD Leetcode Top Interview 150 LLD loop loops Low-level design Mastering C Programming in 15 Days matrix medium recursion rotate array searching&sorting sliding window solid STL string string in c sunction in c system design Template in C++ Top Top 20 coding patterns to master MAANG Interview Top interview 150

Horizontal vs Vertical Scaling #systemdesign #google #microsoft #interview #shorts #apple #FAANG

Tags:

horizontal vs vertical scaling, vertical vs horizontal scaling, horizontal scaling vs vertical scaling, horizontal vs vertical scaling pros and cons, vertical scaling vs horizontal scaling, horizontal scaling vs vertical scaling in aws, horizontal vs vertical scaling in cloud computing, horizontal and vertical scaling, horizontal vs vertical, horizontal and vertical scaling in cloud computing, difference between horizontal and vertical scaling, diagonal scaling vs horizontal scaling


#Scalability #HorizontalScaling #VerticalScaling #SystemArchitecture #Computing #technologynews #HorizontalScaling
#VerticalScaling
#Scalability
#ScaleOut
#ScaleUp
#SystemScaling
#DistributedSystems
#InfrastructureScaling
#CloudScaling
#ResourceScaling
#ScaleOut
#DistributedSystems
#LoadBalancing
#CloudScaling
#Scalability
#HorizontalScalingVsVerticalScaling
#HorizontalScalingExplained
#Elasticity
#DistributedComputing
#SystemArchitecture
#HighAvailability
#FaultTolerance
#ScalingStrategies
#InfrastructureScaling
Horizontal vs Vertical Scaling #systemdesign #google #microsoft #interview #shorts #apple #FAANG
😇why Instagram load fast❓⁉️ #Instagram #interview #apple #iit #microsoft
😇why Instagram load fast❓⁉️ #Instagram #interview #apple #iit #microsoft
Load balancer in 30 second #shorts #youtubeshorts #interview #hld #systemdesign #iit #google #apple
Real life example | Abstract factory | Design pattern #designpatterns #lowleveldesign #interview
Advantage of Abstract factory design pattern #interview #lld #google #apple #meta #facebook
Abstract factory design pattern | what? Why? How? #interview #lld #google #apple #meta #facebook
Master Abstract Factory Design Pattern in C++ | Real-World Examples & Code Explanation

In this video, we break down the Abstract Factory Design Pattern in C++ step-by-step. You’ll learn:
✅ What is Abstract Factory Pattern
✅ When & why to use it in C++
✅ UML diagram explanation
✅ Real-world examples for better understanding
✅ Complete C++ code implementation

Whether you’re preparing for FAANG interviews, learning Design Patterns, or improving your Object-Oriented Programming skills, this tutorial will help you write clean, scalable, and maintainable C++ code.

Keywords:
abstract factory c++, abstract factory design pattern c++, abstract factory design pattern example, creational design patterns in c++, design patterns in c++ with examples, faang interview preparation, c++ oops concepts
abstract factory pattern, c programming, design patterns in c, object oriented design, system architecture, software design, c language tutorial, creational patterns, software engineering, c programming tutorial, factory method pattern, design principles, object creation, software development, programming concepts
master abstract factory design pattern in c,
abstract factory design pattern php,
abstract factory design pattern c#,
abstract factory design pattern vs factory pattern,
abstract factory design pattern js,
abstract factory design pattern c++,
abstract factory design pattern example,
factory and abstract factory design pattern in java,
factory method design pattern php,
abstract factory and factory design pattern,
factory pattern and abstract factory pattern,
abstract factory design pattern example c#,
java abstract factory design pattern,
abstract factory method design pattern,
abstract factory design pattern java,
abstract factory design pattern example java,
abstract factory design pattern typescript,
abstract factory design pattern in java,
abstract factory design pattern in c#,
abstract factory design patterns in java,
factory pattern design pattern,
abstract factory design pattern python

#Cpp #DesignPatterns #AbstractFactory #Programming #codewithme 
#masterabstractfactorydesignpatterninc++ #abstractfactorydesignpatterninc++ #masterabstractfactorydesignpatterninc++hindi #masterabstractfactorydesignpatterninc++and #masterabstractfactorydesignpatterninc++andc
Master Abstract Factory Design Pattern in C++ | Real-World Examples & Code Explanation
LLD | Design pattern types | Types of design pattern | C++ #designpatterns #lld #interview
Singleton Design Pattern | c++ code #softwareengineering #lowleveldesign #codinginterview
Load More... Subscribe

Recent Posts

  • Palindrome Linked List
  • Find the Duplicate Number
  • Remove Nth Node From End of List
  • Linked List Cycle II
  • Decode the string | GFG PTOD | 01 Mar| Medium level | STACK

    Recent Comments

    1. reebjnhzey on GFG PTOD | 23 Feb | Next Greater Element | Medium level | STACK
    2. 서울여성전용마사지 on C program to check Leap Year
    3. http://boyarka-inform.com/ on C program to enter basic salary and calculate gross salary of an employee
    4. Denny on C program to enter basic salary and calculate gross salary of an employee
    5. Cabanon Eco on C program to check Leap Year

    Copyright © 2025 Learn to Code and Code to Learn.

    Powered by PressBook Blog WordPress theme